Hepatitis B Infection
Quantitative determination of HBsAg
Significance, problems and solutions

Wolfram H. Gerlich
Institute for Medical Virology, Justus Liebig University Giessen, Germany
National Consulting Laboratory for Hepatitis B und D
"Natural weapons of mass destruction" on a "Richter"-scale (Weiss und McMichael NatMed 10:S70)
Why we need quantitative assays for HBsAg

• Quality control of HBsAg screening
 - Evaluation of testkits
 - Control of analytical sensitivity
 - Accurately adjusted working controls

• Monitoring of HBV infection
 - Marker for HBV gene expression
 - Surrogate marker of HBV cccDNA in liver
 - Early prognosis of acute and chronic HBV infection
 - Indication and monitoring of interferon therapy

• Establishment of reference sera and HBsAg units
Problems in the standardisation of HBsAg assays

- Heterogeneity of HBsAg particles
HBV- und subviral HBsAg particles in 1 mL blood from highly viremic carriers

10^9 10^{10} 10^{13}
Components of HBV and HBsAg Particles

- **virus**
- ** HBc**
- **DNA-Pol**
- **3.2kb DNA**
- **pr**
- **preS1**
- **preS2**
- **HBsAg**
- **filaments**
- **LHBs**
- **SHBs**
- **MHBs**
- **spheres**
- **length variable**
- **52 nm**
- **17-25 nm**
Problems in the standardisation of HBsAg assays

- Heterogeneity of HBsAg particles
- Heterogeneity of HBs proteins
Model of HBV and subviral HBsAg at 1983
Proteins of HBV and subviral HBsAg-Particles
Proteins of HBV and subviral HBsAg-Particles

Heermann et al. 1984
Components of HBV and HBsAg Particles

- Virus
- preS1
- preS2
- Filaments
- LHBs
- SHBs
- MHBs
- Spheres
- Variable Länge
- 52 nm
- 17-25 nm
Intracellular Life Cycle of Hepatitis B Virus

LHBs
PreS1
attachment
endocytosis

nucleus
golgi
ER
Intracellular Life Cycle of Hepatitis B Virus

LHBs
PreS1
attachment

fusion

endocytosis

release of cores
nuclear transport

uncoating of genome

S domain

nucleus

golgi

ER
Intracellular Life Cycle of Hepatitis B Virus

1. Attachment
2. Endocytosis
3. Fusion
4. Release of cores and nuclear transport
5. Uncoating of genome
6. DNA repair
7. RNA Pol II transcription factors
8. CccDNA

Steps:
- Attachment of virus to cell surface
- Endocytosis into the cell
- Fusion of viral envelope with the cell membrane
- Release of viral core and genome into the nucleus
- Uncoating of the genome
- DNA repair
- Transcription of cccDNA by RNA Pol II
Significance of HBsAg quantity in serum for the course of the infection

- **Synthesis**
 - Dependent on the amount and transcriptional activity of cccDNA in liver
 - Independent of viral genome maturation
- **Increase**
 - New infection or reactivation
- **Decrease of HBsAg in serum indicates**
 - Decrease of cccDNA in the liver and/or
 - Efficient T cell immunity
Monitoring of HBsAg positive persons

- According to German guidelines
 - HBV DNA quantitative
 - HBeAg qualitative
 - HBsAg qualitative

- More important than qualitative serology would be
 - HBsAg quantitative
Anti-HBs

HBsAg

HBV DNA

PCR

Hepatitis

Anti-HBc

Anti-HBs

Acute hepatitis B resolving
Kinetics of HBV DNA and HBsAg during acute Hepatitis B, Moscow 2002

- 52 patients, mostly i.v. drug addicts
 - Weekly samples
 - Alle except one HIV-co-infected recover
- HBV DNA
 - real-time PCR
 - Calibrated with WHO/Eurohep Standard
- HBsAg
 - Quantitative Immune electrophoresis
 - Calibration with Paul-Ehrlich Standard in μg/mL

Half life of HBV DNA (days)
Half life of HBsAg (days)
Prognosis of acute hepatitis B

Germany, 1970ies, 370 patients, biopsy confirmed

<table>
<thead>
<tr>
<th>HBsAg concentration change within 4 weeks</th>
<th>number of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>resolved</td>
</tr>
<tr>
<td>decrease >60%</td>
<td>337</td>
</tr>
<tr>
<td>constant or <60%</td>
<td>2</td>
</tr>
<tr>
<td>increase</td>
<td>1</td>
</tr>
</tbody>
</table>

The first HBsAg Standards of the Paul Ehrlich Institute (PEI)

• Positive plasma units collected in the early 1970ies
 - were screened for high HBsAg titer
 - and subtyped for HBsAg subtypes \(ad \) and \(ay \)
 - Subtypes were pooled separately and recalcified

• HBs antigen (QIE) and protein (\(\text{OD}_{280} \))
 - was quantified as described by Gerlich & Thomssen 1975
 - Adjusted to 50,000 ng HBs \(ad \) or \(ay \) protein / mL
 - Distributed to aliquotes and stored at -80 °C

• HBsAg with reactivity of
 - one nanogram HBs protein in the first PEI standards
 - is one PEI unit of HBsAg

Bonin, Gerlich, Thomssen, 1975
Problems in the standardisation of HBsAg assays

• Heterogeneity of HBsAg particles
• Heterogeneity of HBs proteins
• Diverging HBsAg units
• Diverging HBsAg standards
Three different units of HBsAg quantity

- 1975 Paul Ehrlich Institute Units (PEI-U)
 - equal to one nanogram (ng) **native** HBsAg protein*
- 1980ies WHO 1st International Standard (IU)
 - 1 IU also defined by one ng HBsAg**, pasteurised
 - One IU equalled only 0.55 PEI-U
- Various “nanogram” units (ng) from other institutions
 - Based on purified, **partially inactivated** HBsAg
- Comparison of the 3 unitages in a WHO trial showed
 - Good comparability of the PEI and IU
 - Incompatibility between PEI/IU and most “ng” units
- Official recommendation from WHO: use IU only!

* As present in highly infectious HBV carrier plasma
** As in less infectious, anti-HBe positive plasma
Problems in the standardisation of HBsAg assays

• Heterogeneity of HBsAg particles
• Heterogeneity of HBs proteins
• Diverging HBsAg units
• Diverging HBsAg standards
The WHO 2nd International HBsAg standard

- **Source material:** The Dutch Hepatitis B Vaccine lot 30
 - Purified from highly viremic HBeAg-positive plasma
 - Infectivity inactivated by heating to 102 °C for 90 sec
 - Contained in the 1980ies 66,000 PEI units/mL (Ausria)

- **Characterisation studies done in Giessen**
 - Assay of HBsAg activity in PEI-U using QIE
 - Protein composition using PAGE and silverstain
 - Western blot for preS and S proteins
 - Size exclusion chromatography
 - Density gradient centrifugation

Summary on the source material for the 2nd WHO International Standard for HBsAg

• S-HBs antigenicity was surprisingly high and stable
 - 25 years ago: 66,000 PEI units/mL by Ausria
 - today ca.: 60,000 PEI units/mL by QIE

• Successfully used in WHO trial with various immune assays

• Altered biochemical properties

• Heterogeneous particles
HBsAg quantity and the prognosis of chronic HBV infection
Different HBsAg levels in various phases of chronic HV infection

Jaroczewisz, Cornberg et al., J Hepatol 2010, Medical School Hanover
Different HBsAg levels in various phases of chronic HBV infection

Jaroczewisz, Cornberg et al., J Hepatol 2010, Medical School Hanover
Different HBsAg levels in various phases of chronic HBV infection

Jaroczewisz, Cornberg et al., J Hepatol 2010, Medical School Hanover
Different HBsAg levels in various phases of hepatitis B

Clinical significance?

H. Wedemeyer, MHH 2010
Different HBsAg levels in various phases of hepatitis B

Clinical significance?

Brunetto et al., Gastroenterology 2010: Cut-Off 1000 IU/ml

HBsAg <3500 IU/ml
No reactivations in long-term follow-up!
HBV Therapy: two concepts

• Interferon
 - Possibility for sustained viral response (SVR)
 - Limited duration 6 -12 months
 - But only in 30 % of well selected patients
 - Severe side effects
 - Not possible in advanced liver disease

• Reverse transcriptase inhibitors
 - Well tolerated, effective suppression of viremia
 - Complete cure extremely rare
 - Unlimited duration
 - Resistance
Which patient should get interferon?

Taken from H. Wedemeyer, MHH 2010
Relation between HBsAg concentration and outcome of interferon therapy

Düsseldorf, 1990ies, 96 chronic HB patients

<table>
<thead>
<tr>
<th>Response</th>
<th>yes</th>
<th>no</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBeAg +</td>
<td>15 800*</td>
<td>50 000*</td>
<td><0.003</td>
</tr>
<tr>
<td>HBeAg -</td>
<td>3 800</td>
<td>4 500</td>
<td>ns</td>
</tr>
</tbody>
</table>

* ng HBsAg/mL or PEI-U/mL measured by QIE before therapy

Erhardt et al. Hepatology 2000; 31:716-725
Decrease of HBsAg* during interferon therapy

- 386 patients, HBeAg negative
- 48 weeks therapy with
 - PEG-interferon,
 - or lamivudin
 - or combination of both
- HBsAg decrease only with PEG-Ifn
 - On the average by factor 6
 - Only when complete cure occurred**
- With lamivudin alone,
 - even with persistently negative viraemia **
 - no decrease of HBsAg

*Architect, Abbott ** < 400 copies/mL HBV DNA
48 patients with chronic hepatitis B, HBeAg-negative
- 48 weeks PEG-Ifn
- 12 (25%) SVR, <70 copies/mL
- 3 HBsAg negative
- Decrease of HBsAg only when SVR followed

Decrease

>0.5 after 12 W.: 90% NPV, 89% PPV
>1.0 after 24 W.: 97% NPV, 92% PPV
HBsAg levels after interferon therapy: SVRs vs. Relapsers

*SVRs (N=12)

NRs (N=18)

Relapsers (N=18)

*SVRs (N=12)

Moucari et al. Hepatology 2009
Intracellular Life Cycle of Hepatitis B Virus
Problems in the standardisation of HBsAg assays

- Heterogeneity of HBsAg particles
- Heterogeneity of HBs proteins
- Diverging HBsAg units
- Diverging HBsAg standards
- Different genotypes
Summary on the source material for the 2nd WHO International Standard for HBsAg

• SHBsAg surprisingly high and stable
 - 25 years ago: 66,000 PEI units/mL by Ausria
 - today ca.: 60,000 PEI units/mL by QIE
• Successfully used in WHO trial with various immune assays
• Altered biochemical properties
• Heterogeneous particles
• HBV genotype A2
 - Central European variant
 - Present in 0.9 % of HBV carriers only
• Native HBsAg of all genotypes would be preferable
HBV: one virus species
but
many genotypes A1 – I of humans
and
related genotypes of apes
Worldwide distribution of HBV Genosubtypes

From Schaefer & Gerlich, Textbook of Hepatology 2007, 825
WHO program for HBV genotype panels

- for virion-bound HBV DNA in plasma (established)
- and **native** HBsAg in plasma (in progress)
 - realised by Paul Ehrlich Institute together with Institute of Medical Virology Giessen
HBV DNA geno(sub)type / HBsAg subtype reference panel of WHO

- Collection of 215 plasmas worldwide
- Geno(sub)type determined by sequencing
 - Nomenclature A1 – H according to Norder et al. (2004)
- Selection of 16 HBsAg highly positive samples
 - from various parts of the world
 - With typical wild type sequences
HBV DNA geno(sub)type / HBsAg subtype reference panel of the WHO

- **HBs protein** amount was determined *after* purification
 - nanogram HBsAg protein (ng) per mL

- **HBs antigen reactivity** was determined *before* purification
 - in **PEI units (PU)** by in-house immune electrophoresis
 - one PU should correspond to 1 ng HBs protein
 - in **International Units (IU)**
 - by quantitative immune assay
 - Architect from Abbott
Composition, origin and HBs protein contents of the 16 WHO panel members

<table>
<thead>
<tr>
<th>Genotype</th>
<th>HBsAg subtype</th>
<th>Origin</th>
<th>µg/ml protein</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>KG</td>
<td>D1_ayw2</td>
<td>Germany</td>
<td>93.47</td>
<td>Internal reference plasma</td>
</tr>
<tr>
<td>N4542</td>
<td>A1_adw2</td>
<td>South Africa</td>
<td>119.84</td>
<td></td>
</tr>
<tr>
<td>N4407</td>
<td>A1_adw2</td>
<td>Brazil</td>
<td>92.69</td>
<td></td>
</tr>
<tr>
<td>N4879</td>
<td>A2_adw2</td>
<td>Germany</td>
<td>64.23</td>
<td></td>
</tr>
<tr>
<td>N4214</td>
<td>B1_adw2</td>
<td>Japan</td>
<td>29.82</td>
<td></td>
</tr>
<tr>
<td>N4222</td>
<td>B2_adr</td>
<td>Japan</td>
<td>80.46</td>
<td></td>
</tr>
<tr>
<td>N4227</td>
<td>C2_Ce_adr</td>
<td>Japan</td>
<td>84.02</td>
<td></td>
</tr>
<tr>
<td>N4229</td>
<td>C2_Ce_adr</td>
<td>Japan</td>
<td>47.48</td>
<td></td>
</tr>
<tr>
<td>N3825</td>
<td>C2_Ce_adr</td>
<td>Russia</td>
<td>50.37</td>
<td></td>
</tr>
<tr>
<td>N4203</td>
<td>D1_ayw2</td>
<td>Germany</td>
<td>119.70</td>
<td></td>
</tr>
<tr>
<td>N4595</td>
<td>D3_ayw2</td>
<td>South Africa</td>
<td>41.88</td>
<td></td>
</tr>
<tr>
<td>N4684</td>
<td>D1_ayw2</td>
<td>Iran</td>
<td></td>
<td>HBs protein amount too low</td>
</tr>
<tr>
<td>N4881</td>
<td>E_ayw4</td>
<td>West Africa</td>
<td>85.56</td>
<td></td>
</tr>
<tr>
<td>N4494</td>
<td>F3_adw4</td>
<td>Brazil</td>
<td></td>
<td>HBs protein amount too low</td>
</tr>
<tr>
<td>N4457</td>
<td>F3_adw4</td>
<td>Brazil</td>
<td>24.79</td>
<td></td>
</tr>
<tr>
<td>N4882</td>
<td>G_adw2</td>
<td>Germany</td>
<td></td>
<td>HBs protein amount too low</td>
</tr>
<tr>
<td>K1146</td>
<td>H_adw4</td>
<td>Germany</td>
<td>107.88</td>
<td></td>
</tr>
</tbody>
</table>
Ratios of PEI-U or IU HBsAg to ng HBs protein in the WHO reference plasmas

<table>
<thead>
<tr>
<th>Genotype/Subtype</th>
<th>Origin</th>
<th>Start PEI-KU/ml</th>
<th>KIU/ml (Architect)</th>
<th>µg/ml protein</th>
<th>PEI-U/ng protein</th>
<th>IU/ng protein</th>
<th>IU/PEI-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>KG D1 ayw2</td>
<td>Germany</td>
<td>100</td>
<td>125,19</td>
<td>93,47</td>
<td>1,07</td>
<td>1,35</td>
<td>1,2519</td>
</tr>
<tr>
<td>KG D1 ayw2</td>
<td>South Africa</td>
<td>75,3</td>
<td>131,92</td>
<td>119,84</td>
<td>0,63</td>
<td>1,10</td>
<td>1,75</td>
</tr>
<tr>
<td>KG D1 ayw2</td>
<td>Brazil</td>
<td>70,0</td>
<td>94,0</td>
<td>92,69</td>
<td>0,76</td>
<td>1,01</td>
<td>1,34</td>
</tr>
<tr>
<td>KG D1 ayw2</td>
<td>Germany</td>
<td>57</td>
<td>74,3</td>
<td>64,23</td>
<td>0,89</td>
<td>1,16</td>
<td>1,30</td>
</tr>
<tr>
<td>KG D1 ayw2</td>
<td>Japan</td>
<td>39,8</td>
<td>51,4</td>
<td>29,82</td>
<td>1,33</td>
<td>1,72</td>
<td>1,29</td>
</tr>
<tr>
<td>KG D1 ayw2</td>
<td>Japan</td>
<td>50,1</td>
<td>95,3</td>
<td>80,46</td>
<td>0,62</td>
<td>1,18</td>
<td>1,90</td>
</tr>
<tr>
<td>KG D1 ayw2</td>
<td>Japan</td>
<td>63,3</td>
<td>70,2</td>
<td>84,02</td>
<td>0,75</td>
<td>0,84</td>
<td>1,11</td>
</tr>
<tr>
<td>KG D1 ayw2</td>
<td>Japan</td>
<td>46,1</td>
<td>47,0</td>
<td>47,48</td>
<td>0,97</td>
<td>0,99</td>
<td>1,02</td>
</tr>
<tr>
<td>KG D1 ayw2</td>
<td>Russia</td>
<td>50,2</td>
<td>54,4</td>
<td>50,37</td>
<td>1,00</td>
<td>1,08</td>
<td>1,08</td>
</tr>
<tr>
<td>KG D1 ayw2</td>
<td>Germany</td>
<td>87,3</td>
<td>130,4</td>
<td>119,70</td>
<td>0,73</td>
<td>1,09</td>
<td>1,49</td>
</tr>
<tr>
<td>KG D3 ayw2</td>
<td>South Africa</td>
<td>46,1</td>
<td>63,8</td>
<td>41,88</td>
<td>1,10</td>
<td>1,52</td>
<td>1,38</td>
</tr>
<tr>
<td>KG D1 ayw2</td>
<td>Iran</td>
<td>12,6</td>
<td>17,66</td>
<td></td>
<td></td>
<td></td>
<td>1,40</td>
</tr>
<tr>
<td>KG E_ayw4</td>
<td>West Africa</td>
<td>74,8</td>
<td>82,6</td>
<td>85,56</td>
<td>0,87</td>
<td>1,04</td>
<td>1,10</td>
</tr>
<tr>
<td>KG F3_adw4</td>
<td>Brazil</td>
<td>24,75</td>
<td>47,88</td>
<td></td>
<td></td>
<td></td>
<td>1,93</td>
</tr>
<tr>
<td>KG F3_adw4</td>
<td>Brazil</td>
<td>28,0</td>
<td>39,8</td>
<td>24,79</td>
<td>1,13</td>
<td>1,61</td>
<td>1,42</td>
</tr>
<tr>
<td>KG G adw2</td>
<td>Germany</td>
<td>6,0</td>
<td>25,2</td>
<td></td>
<td></td>
<td>4,20</td>
<td></td>
</tr>
<tr>
<td>KG H adw4</td>
<td>Germany</td>
<td>77,2</td>
<td>342,07</td>
<td>107,88</td>
<td>0,71</td>
<td>3,17</td>
<td>4,43</td>
</tr>
</tbody>
</table>

MW without marked values:

<table>
<thead>
<tr>
<th></th>
<th>PEI-U/ng protein</th>
<th>IU/ng protein</th>
<th>IU/PEI-U</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,90</td>
<td>1,35</td>
<td>1,73</td>
</tr>
<tr>
<td>SD</td>
<td>0,20</td>
<td>0,45</td>
<td>0,98</td>
</tr>
<tr>
<td>MW</td>
<td>1,08</td>
<td>1,39</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0,13</td>
<td>0,27</td>
<td></td>
</tr>
</tbody>
</table>
Conversion factors for nanogram HBsAg protein to Paul Ehrlich Institute QIE-Units (PU)

- No outliers
- Mean value

0.90 0.20 PEI-U/ng HBs protein
range 0.62 - 1.33

- determined by QIE with “anti-a” serum generated with subsequent injection of genotype A2, D, and C2
Conversion factors for nanogram HBsAg protein to HBsAg International Units (Architect)

- One ng was between
 - 0.84 IU for genotype C2, subtype adr to
 - 3.17 IU for genotype H, subtype adw2

- Mean value
 - 1.35 ± 0.45 IU/ng
 range 0.84 - 3.17

- 1.08 ± 0.13 IU/ng
 range 0.84 - 1.18
 - if 4 outliers (B1, D3, F3, H) were excluded.
 - These reacted better with Architect than expected
Detection limits of Enzygnost HBsAg v6 with the future WHO panel

- **Picogram HBsAg protein**
 - 7.2 pg/ml for gt A2 to
 - 12.7 pg/ml for gt B2
 - mean value 9.5 ± 1.6 pg/ml.

- **Milli Paul Ehrlich Units** (in house QIE, Giessen)
 - 5.8 for gt A1 to
 - 14.6 mPU/ml for gt D1
 - mean value 8.9 ± 2.2 mPU/ml.

- **Milli International Units** (WHO, Architect)
 - 8.3 for gt A2 to
 - 18.7 mIU/ml for gt F3
 - mean value 11.6 ± 3.0 mIU/ml.
Conclusions I

Methods for HBsAg quantitation

- Reference plasmas for most HBsAg genotypes available soon
- Accurate assay of HBs proteins in SI units possible
- Significant differences between different genotypes
- HBsAg nanograms of all genotypes correlate well with „old“ PEI-antigen units
- More divergence with IU (Architect)
 - Much less without four outliers (B1, D3, G, H)
- Most consistent data obtained with ng units
Conclusions II

Medical Significance of HBsAg quantitation

• Monitoring of HBV infection
 - Marker for HBV gene expression
 - Surrogate marker of HBV cccDNA in liver
 - Early prognosis of acute HBV infection
 - Single point assay allows for prognosis of chronic HBV infection
 - Indication and monitoring of interferon therapy
Many thanks to

Christian Schüttler
Ulrike Wend
Wulf Willems
Dieter Glebe
Mona Saniewski
Corinna Bremer

Supported by DFG Collaborative Research Centre SFB 535 Project A2 and WHO/PEI